Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Free Radic Biol Med ; 210: 85-106, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37952585

RESUMEN

This review uses the marine bivalve Crassostrea gigas to highlight redox reactions and control systems in species living in dynamic intertidal environments. Intertidal species face daily and seasonal environmental variability, including temperature, oxygen, salinity, and nutritional changes. Increasing anthropogenic pressure can bring pollutants and pathogens as additional stressors. Surprisingly, C. gigas demonstrates impressive adaptability to most of these challenges. We explore how ROS production, antioxidant protection, redox signaling, and metabolic adjustments can shed light on how redox biology supports oyster survival in harsh conditions. The review provides (i) a brief summary of shared redox sensing processes in metazoan; (ii) an overview of unique characteristics of the C. gigas intertidal habitat and the suitability of this species as a model organism; (iii) insights into the redox biology of C. gigas, including ROS sources, signaling pathways, ROS-scavenging systems, and thiol-containing proteins; and examples of (iv) hot topics that are underdeveloped in bivalve research linking redox biology with immunometabolism, physioxia, and development. Given its plasticity to environmental changes, C. gigas is a valuable model for studying the role of redox biology in the adaptation to harsh habitats, potentially providing novel insights for basic and applied studies in marine and comparative biochemistry and physiology.


Asunto(s)
Antioxidantes , Crassostrea , Animales , Antioxidantes/metabolismo , Crassostrea/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Oxidación-Reducción , Temperatura
2.
Nucleic Acids Res ; 50(15): 8626-8642, 2022 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-35947695

RESUMEN

Mitochondrial DNA (mtDNA) is prone to mutation in aging and over evolutionary time, yet the processes that regulate the accumulation of de novo mtDNA mutations and modulate mtDNA heteroplasmy are not fully elucidated. Mitochondria lack certain DNA repair processes, which could contribute to polymerase error-induced mutations and increase susceptibility to chemical-induced mtDNA mutagenesis. We conducted error-corrected, ultra-sensitive Duplex Sequencing to investigate the effects of two known nuclear genome mutagens, cadmium and Aflatoxin B1, on germline mtDNA mutagenesis in Caenorhabditis elegans. Detection of thousands of mtDNA mutations revealed pervasive heteroplasmy in C. elegans and that mtDNA mutagenesis is dominated by C:G → A:T mutations generally attributed to oxidative damage. However, there was no effect of either exposure on mtDNA mutation frequency, spectrum, or trinucleotide context signature despite a significant increase in nuclear mutation rate after aflatoxin B1 exposure. Mitophagy-deficient mutants pink-1 and dct-1 accumulated significantly higher levels of mtDNA damage compared to wild-type C. elegans after exposures. However, there were only small differences in mtDNA mutation frequency, spectrum, or trinucleotide context signature compared to wild-type after 3050 generations, across all treatments. These findings suggest mitochondria harbor additional previously uncharacterized mechanisms that regulate mtDNA mutational processes across generations.


Asunto(s)
Caenorhabditis elegans , ADN Mitocondrial , Animales , ADN Mitocondrial/genética , Caenorhabditis elegans/genética , Cadmio/toxicidad , Aflatoxina B1/toxicidad , Acumulación de Mutaciones , Mitocondrias/genética , Mutación , Células Germinativas
3.
Front Immunol ; 13: 840272, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35273616

RESUMEN

Mitochondria are central players in host immunometabolism as they function not only as metabolic hubs but also as signaling platforms regulating innate immunity. Environmental exposures to mitochondrial toxicants occur widely and are increasingly frequent. Exposures to these mitotoxicants may pose a serious threat to organismal health and the onset of diseases by disrupting immunometabolic pathways. In this study, we investigated whether the Complex I inhibitor rotenone could alter C. elegans immunometabolism and disease susceptibility. C. elegans embryos were exposed to rotenone (0.5 µM) or DMSO (0.125%) until they reached the L4 larval stage. Inhibition of mitochondrial respiration by rotenone and disruption of mitochondrial metabolism were evidenced by rotenone-induced detrimental effects on mitochondrial efficiency and nematode growth and development. Next, through transcriptomic analysis, we investigated if this specific but mild mitochondrial stress that we detected would lead to the modulation of immunometabolic pathways. We found 179 differentially expressed genes (DEG), which were mostly involved in detoxification, energy metabolism, and pathogen defense. Interestingly, among the down-regulated DEG, most of the known genes were involved in immune defense, and most of these were identified as commonly upregulated during P. aeruginosa infection. Furthermore, rotenone increased susceptibility to the pathogen Pseudomonas aeruginosa (PA14). However, it increased resistance to Salmonella enterica (SL1344). To shed light on potential mechanisms related to these divergent effects on pathogen resistance, we assessed the activation of the mitochondrial unfolded protein response (UPRmt), a well-known immunometabolic pathway in C. elegans which links mitochondria and immunity and provides resistance to pathogen infection. The UPRmt pathway was activated in rotenone-treated nematodes further exposed for 24 h to the pathogenic bacteria P. aeruginosa and S. enterica or the common bacterial food source Escherichia coli (OP50). However, P. aeruginosa alone suppressed UPRmt activation and rotenone treatment rescued its activation only to the level of DMSO-exposed nematodes fed with E. coli. Module-weighted annotation bioinformatics analysis was also consistent with UPRmt activation in rotenone-exposed nematodes consistent with the UPR being involved in the increased resistance to S. enterica. Together, our results demonstrate that the mitotoxicant rotenone can disrupt C. elegans immunometabolism in ways likely protective against some pathogen species but sensitizing against others.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/metabolismo , Dimetilsulfóxido/metabolismo , Escherichia coli/metabolismo , Pseudomonas aeruginosa/fisiología , Rotenona/toxicidad
4.
Environ Sci Technol ; 56(2): 1113-1124, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-35038872

RESUMEN

Silver nanoparticles (AgNPs) are extensively used in consumer products and biomedical applications, thus guaranteeing both environmental and human exposures. Despite extensive research addressing AgNP safety, there are still major knowledge gaps regarding AgNP toxicity mechanisms, particularly in whole organisms. Mitochondrial dysfunction is frequently described as an important cytotoxicity mechanism for AgNPs; however, it is still unclear if mitochondria are the direct targets of AgNPs. To test this, we exposed the nematodeCaenorhabditis elegans to sublethal concentrations of AgNPs and assessed specific mitochondrial parameters as well as organismal-level endpoints that are highly reliant on mitochondrial function, such as development and chemotaxis behavior. All AgNPs tested significantly delayed nematode development, disrupted mitochondrial bioenergetics, and blocked chemotaxis. However, silver was not preferentially accumulated in mitochondria, indicating that these effects are likely not due to direct mitochondria-AgNP interactions. Mutant nematodes with deficiencies in mitochondrial dynamics displayed both greater and decreased susceptibility to AgNPs compared to wild-type nematodes, which was dependent on the assay and AgNP type. Our study suggests that AgNPs indirectly promote mitochondrial dysfunction, leading to adverse outcomes at the organismal level, and reveals a role of gene-environment interactions in the susceptibility to AgNPs. Finally, we propose a novel hypothetical adverse outcome pathway for AgNP effects to guide future research.


Asunto(s)
Nanopartículas del Metal , Plata , Humanos , Nanopartículas del Metal/toxicidad , Mitocondrias/metabolismo , Dinámicas Mitocondriales , Plata/farmacología
5.
Environ Sci Technol ; 2021 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-34346225

RESUMEN

Silver nanoparticles (AgNPs) are well-proven antimicrobial nanomaterials, yet little is elucidated regarding the mechanism underlying cytotoxicity induced by these nanoparticles. Here, we tested the hypothesis that mitochondria are primary intracellular targets of two AgNPs and silver ions in mouse hepatocytes (AML12) cultured in glucose- and galactose-based media. AML12 cells were more sensitive to mitochondrial uncoupling when grown with galactose rather than glucose. However, 24 h treatments with 15 nm AgNPs and 6 nm GA-AgNPs (5 and 10 µg/mL) and AgNO3 (1 and 3 µg/mL), concentrations that resulted in either 10 or 30% cytotoxicity, failed to cause more toxicity to AML12 cells grown on galactose than glucose. Furthermore, colocalization analysis and subcellular Ag quantification did not show any enrichment of silver content in mitochondria in either medium. Finally, the effects of the same exposures on mitochondrial respiration were mild or undetectable, a result inconsistent with mitochondrial toxicity causing cell death. Our results suggest that neither ionic Ag nor the AgNPs that we tested specifically target mitochondria and are inconsistent with mitochondrial dysfunction being the primary cause of cell death after Ag exposure under these conditions.

6.
Chem Biol Interact ; 315: 108868, 2020 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-31669321

RESUMEN

The extensive use of silver nanoparticles (AgNPs) in manufactured products will inevitably increase environmental exposure, highlighting the importance of accurate toxicity assessments. A frequent strategy to estimate AgNP cytotoxicity is to use absorbance or fluorescent-based assays. In this study we report that AgNPs - with or without surface functionalizations (polyvinyl pyrrolidone or gum arabic), and of different sizes (2-15 nm) - can interfere with the spectrometric quantification of different dyes commonly used in cytotoxicity assays, such as 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), neutral red (NR), Hoechst, and Resazurin. Some AgNP types caused more interference than others, which was dependent on the assay. Overall most AgNPs caused the direct reduction of MTT, as well as Hoechst and NR fluorescence quenching, and absorbed light at the same wavelength as NR. None of the AgNPs tested caused the direct reduction of Resazurin; however, depending on AgNP characteristics and concentration, they may still promote fluorescence quenching of this dye. Our results show that AgNPs with different size and coatings can interfere with spectroscopy-based assays to different degrees, suggesting that their cytotoxicity may be underestimated or overestimated. We suggest that when using any spectroscopy-based assay it is essential that each individual nanoparticle formulation be tested first for potential interferences at all intended concentrations.


Asunto(s)
Nanopartículas del Metal/administración & dosificación , Nanopartículas del Metal/química , Rojo Neutro/química , Oxazinas/química , Plata/química , Plata/farmacología , Sales de Tetrazolio/química , Tiazoles/química , Xantenos/química , Animales , Bioensayo/métodos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Colorantes , Ratones , Tamaño de la Partícula , Povidona/química , Propiedades de Superficie/efectos de los fármacos
7.
Aging (Albany NY) ; 11(16): 6535-6554, 2019 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-31454791

RESUMEN

Mild suppression of mitochondrial activity has beneficial effects across species. The nematode Caenorhabditis elegans is a versatile, genetically tractable model organism widely employed for aging studies, which has led to the identification of many of the known evolutionarily conserved mechanisms regulating lifespan. In C. elegans the pro-longevity effect of reducing mitochondrial function, for example by RNA interference, is only achieved if mitochondrial stress is applied during larval development. Surprisingly, a careful analysis of changes in mitochondrial functions resulting from such treatments during the developmental windows in which pro-longevity signals are programmed has never been carried out. Thus, although the powerful C. elegans genetics have led to the identification of different molecular mechanisms causally involved in mitochondrial stress control of longevity, specific functional mitochondrial biomarkers indicative or predictive of lifespan remain to be identified. To fill this gap, we systematically characterized multiple mitochondrial functional parameters at an early developmental stage in animals that are long-lived due to mild knockdown of twelve different mitochondrial proteins and correlated these parameters with animals' lifespan. We found that basal oxygen consumption rate and ATP-linked respiration positively correlate with lifespan extension and propose the testable hypothesis that the Bioenergetic Health Index can be used as a proxy to predict health-span outcomes.


Asunto(s)
Caenorhabditis elegans/crecimiento & desarrollo , Longevidad/genética , Longevidad/fisiología , Mitocondrias/metabolismo , Animales , Biomarcadores , Regulación del Desarrollo de la Expresión Génica
8.
Eur J Cell Biol ; 98(5-8): 151043, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31138438

RESUMEN

Mesencephalic astrocyte-derived neurotrophic factor (MANF) is the only human neurotrophic factor with an evolutionarily-conserved C. elegans homolog, Y54G2A.23 or manf-1. MANF is a small, soluble, endoplasmic-reticulum (ER)-resident protein that is secreted upon ER stress and promotes survival of target cells such as neurons. However, the role of MANF in ER stress and its mechanism of cellular protection are not clear and the function of MANF in C. elegans is only beginning to emerge. In this study, we show that depletion of C. elegans manf-1 causes a slight decrease in lifespan and brood size; furthermore, combined depletion of manf-1 and the IRE-1/XBP-1 ER stress/UPR pathway resulted in sterile animals that did not produce viable progeny. We demonstrate upregulation of markers of ER stress in L1 larval nematodes, as measured by hsp-3 and hsp-4 transcription, upon depletion of manf-1 by RNAi or mutation; however, there was no difference in tunicamycin-induced expression of hsp-3 and hsp-4 between wild-type and MANF-deficient worms. Surprisingly, larval growth arrest observed in wild-type nematodes reared on tunicamycin is completely prevented in the manf-1 (tm3603) mutant. Transcriptional microarray analysis revealed that manf-1 mutant L1 larvae exhibit a novel modulation of innate immunity genes in response to tunicamycin. The hypothesis that manf-1 negatively regulates the innate immunity pathway is supported by our finding that the development of manf-1 mutant larvae compared to wild-type larvae is not inhibited by growth on P. aeruginosa. Together, our data represent the first characterization of C. elegans MANF as a key modulator of organismal ER stress and immunity.


Asunto(s)
Antibacterianos/farmacología , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/genética , Estrés del Retículo Endoplásmico/efectos de los fármacos , Factores de Crecimiento Nervioso/deficiencia , Factores de Crecimiento Nervioso/genética , Tunicamicina/farmacología , Animales , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/microbiología , Proteínas de Caenorhabditis elegans/metabolismo , Inmunidad Innata/efectos de los fármacos , Larva/efectos de los fármacos , Larva/inmunología , Factores de Crecimiento Nervioso/metabolismo , Pseudomonas aeruginosa/crecimiento & desarrollo , Pseudomonas aeruginosa/metabolismo
9.
Environ Toxicol Chem ; 38(8): 1625-1634, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31034624

RESUMEN

Mitochondria are key targets of many environmental contaminants, because specific chemicals can interact directly with mitochondrial proteins, lipids, and ribonucleic acids. These direct interactions serve as molecular initiating events that impede adenosine triphosphate production and other critical functions that mitochondria serve within the cell (e.g., calcium and metal homeostasis, apoptosis, immune signaling, redox balance). A limited but growing number of adverse outcome pathways (AOPs) have been proposed to associate mitochondrial dysfunction with effects at organismal and population levels. These pathways involve key events such as altered membrane potential, mitochondrial fission/fusion, and mitochondrial DNA damage, among others. The present critical review and analysis reveals current progress on AOPs involving mitochondrial dysfunction, and, using a network-based computational approach, identifies the localization of mitochondrial molecular initiating events and key events within multiple existing AOPs. We also present 2 case studies, the first examining the interaction between mitochondria and immunotoxicity, and the second examining the role of early mitochondrial dysfunction in the context of behavior (i.e., locomotor activity). We discuss limitations in our current understanding of mitochondrial AOPs and highlight opportunities for clarifying their details. Advancing our knowledge of key event relationships within the AOP framework will require high-throughput datasets that permit the development and testing of chemical-agnostic AOPs, as well as high-resolution research that will enhance the mechanistic testing and validation of these key event relationships. Given the wide range of chemicals that affect mitochondria, and the centrality of energy production and signaling to ecologically important outcomes such as pathogen defense, homeostasis, growth, and reproduction, a better understanding of mitochondrial AOPs is expected to play a significant, if not central, role in environmental toxicology. Environ Toxicol Chem 2019;38:1625-1634. © 2019 SETAC.


Asunto(s)
Rutas de Resultados Adversos , Ecotoxicología/métodos , Contaminantes Ambientales/toxicidad , Mitocondrias/efectos de los fármacos , Animales , Contaminantes Ambientales/metabolismo , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/fisiología , Dinámicas Mitocondriales/efectos de los fármacos , Oxidación-Reducción , Salud Poblacional , Medición de Riesgo
10.
J Fish Dis ; 42(3): 455-463, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30659615

RESUMEN

Perkinsus spp. have been detected in various bivalve species from north-east Brazil. Santa Catarina is a South Brasil state with the highest national oyster production. Considering the pathogenicity of some Perkinsus spp., a study was carried out to survey perkinsosis in two oyster species cultured in this State, the mangrove oyster Crassostrea gasar and the Pacific oyster Crassostrea gigas. Sampling involved eight sites along the state coast, and oyster sampling was collected during the period between January 2013 and December 2014. For the detection of Perkinsus, Ray's fluid thioglycollate medium (RFTM) and histology were used, and for the identification of the species, PCR and DNA sequencing were used. Perkinsus spp. was found by RFTM in C. gigas and C. gasar from São Francisco do Sul. This pathology was also detected in C. gasar from Balneário Barra do Sul both, by RFTM and histology. Perkinsus marinus was identified in C. gigas and C. gasar from São Francisco do Sul and Perkinsus beihaiensis in C. gasar from Balneário Barra do Sul. This is the first report of P. marinus in C. gigas from South America. Results of this preliminary study suggest that both oyster species tolerate the species of Perkinsus identified, without suffering heavy lesions.


Asunto(s)
Alveolados/aislamiento & purificación , Crassostrea/parasitología , Infecciones Protozoarias en Animales/epidemiología , Alveolados/genética , Animales , Acuicultura , Brasil/epidemiología , Reacción en Cadena de la Polimerasa/métodos , Infecciones Protozoarias en Animales/parasitología , Análisis de Secuencia de ADN/métodos
11.
Am J Physiol Cell Physiol ; 315(6): C781-C792, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30133321

RESUMEN

Starvation significantly alters cellular physiology, and signs of aging have been reported to occur during starvation. Mitochondria are essential to the regulation of cellular energetics and aging. We sought to determine whether mitochondria exhibit signs of aging during starvation and whether quality control mechanisms regulate mitochondrial physiology during starvation. We describe effects of starvation on mitochondria in the first and third larval stages of the nematode Caenorhabditis elegans. When starved, C. elegans larvae enter developmental arrest. We observed fragmentation of the mitochondrial network, a reduction in mitochondrial DNA (mtDNA) copy number, and accumulation of DNA damage during starvation-induced developmental arrest. Mitochondrial function was also compromised by starvation. Starved worms had lower basal, maximal, and ATP-linked respiration. These observations are consistent with reduced mitochondrial quality, similar to mitochondrial phenotypes during aging. Using pharmacological and genetic approaches, we found that worms deficient for autophagy were short-lived during starvation and recovered poorly from extended starvation, indicating sensitivity to nutrient stress. Autophagy mutants unc-51/Atg1 and atg-18/Atg18 maintained greater mtDNA content than wild-type worms during starvation, suggesting that autophagy promotes mitochondrial degradation during starvation. unc-51 mutants also had a proportionally smaller reduction in oxygen consumption rate during starvation, suggesting that autophagy also contributes to reduced mitochondrial function. Surprisingly, mutations in genes involved in mitochondrial fission and fusion as well as selective mitophagy of damaged mitochondria did not affect mitochondrial content during starvation. Our results demonstrate the profound influence of starvation on mitochondrial physiology with organismal consequences, and they show that these physiological effects are influenced by autophagy.


Asunto(s)
Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Autofagia/genética , Caenorhabditis elegans/fisiología , Dinámicas Mitocondriales/genética , Inanición/genética , Animales , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Daño del ADN/genética , ADN Mitocondrial/genética , Larva/genética , Larva/metabolismo , Longevidad/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Dinámicas Mitocondriales/fisiología , Mitofagia/genética , Inanición/metabolismo
12.
Toxicol Sci ; 162(1): 15-23, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29340618

RESUMEN

Recent decades have seen a rapid increase in reported toxic effects of drugs and pollutants on mitochondria. Researchers have also documented many genetic differences leading to mitochondrial diseases, currently reported to affect ∼1 person in 4,300, creating a large number of potential gene-environment interactions in mitochondrial toxicity. We briefly review this history, and then highlight cutting-edge areas of mitochondrial research including the role of mitochondrial reactive oxygen species in signaling; increased understanding of fundamental biological processes involved in mitochondrial homeostasis (DNA maintenance and mutagenesis, mitochondrial stress response pathways, fusion and fission, autophagy and biogenesis, and exocytosis); systemic effects resulting from mitochondrial stresses in specific cell types; mitochondrial involvement in immune function; the growing evidence of long-term effects of mitochondrial toxicity; mitochondrial-epigenetic cross-talk; and newer approaches to test chemicals for mitochondrial toxicity. We also discuss the potential importance of hormetic effects of mitochondrial stressors. Finally, we comment on future areas of research we consider critical for mitochondrial toxicology, including increased integration of clinical, experimental laboratory, and epidemiological (human and wildlife) studies; improved understanding of biomarkers in the human population; and incorporation of other factors that affect mitochondria, such as diet, exercise, age, and nonchemical stressors.


Asunto(s)
Investigación Biomédica/historia , Contaminantes Ambientales/toxicidad , Mitocondrias/efectos de los fármacos , Enfermedades Mitocondriales/historia , Toxicología/historia , Investigación Biomédica/tendencias , Contaminantes Ambientales/historia , Historia del Siglo XX , Historia del Siglo XXI , Homeostasis , Hormesis , Humanos , Mitocondrias/inmunología , Mitocondrias/metabolismo , Enfermedades Mitocondriales/inmunología , Enfermedades Mitocondriales/metabolismo , Especies Reactivas de Oxígeno/historia , Especies Reactivas de Oxígeno/metabolismo , Toxicología/tendencias
13.
Environ Toxicol Chem ; 36(7): 1833-1845, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-27363828

RESUMEN

Urban sewage is a concerning issue worldwide, threatening both wildlife and human health. The present study investigated protein oxidation in mangrove oysters (Crassostrea brasiliana) exposed to seawater from Balneário Camboriú, an important tourist destination in Brazil that is affected by urban sewage. Oysters were exposed for 24 h to seawater collected close to the Camboriú River (CAM1) or 1 km away (CAM2). Seawater from an aquaculture laboratory was used as a reference. Local sewage input was marked by higher levels of coliforms, nitrogen, and phosphorus in seawater, as well as polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), linear alkylbenzenes (LABs), and fecal steroid in sediments at CAM1. Exposure of oysters to CAM1 caused marked bioaccumulation of LABs and decreased PAH and PCB concentrations after exposure to both CAM1 and CAM2. Protein thiol oxidation in gills, digestive gland, and hemolymph was evaluated. Lower levels of reduced protein thiols were detected in hemolymph from CAM1, and actin, segon, and dominin were identified as targets of protein thiol oxidation. Dominin susceptibility to oxidation was confirmed in vitro by exposure to peroxides and hypochlorous acid, and 2 cysteine residues were identified as potential sites of oxidation. Overall, these data indicate that urban sewage contamination in local waters has a toxic potential and that protein thiol oxidation in hemolymph could be a useful biomarker of oxidative stress in bivalves exposed to contaminants. Environ Toxicol Chem 2017;36:1833-1845. © 2016 SETAC.


Asunto(s)
Crassostrea/metabolismo , Estrés Oxidativo/efectos de los fármacos , Aguas del Alcantarillado/análisis , Compuestos de Sulfhidrilo/química , Contaminantes Químicos del Agua/toxicidad , Animales , Crassostrea/efectos de los fármacos , Femenino , Sedimentos Geológicos/análisis , Sedimentos Geológicos/química , Hemolinfa/metabolismo , Humanos , Masculino , Oxidación-Reducción , Bifenilos Policlorados/análisis , Bifenilos Policlorados/química , Hidrocarburos Policíclicos Aromáticos/análisis , Hidrocarburos Policíclicos Aromáticos/química , Proteínas/análisis , Agua de Mar/química , Aguas del Alcantarillado/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Contaminantes Químicos del Agua/química
14.
Aquat Toxicol ; 173: 105-119, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26859778

RESUMEN

The mercapturic acid pathway (MAP) is a major phase II detoxification route, comprising the conjugation of electrophilic substances to glutathione (GSH) in a reaction catalyzed by glutathione S-transferase (GST) enzymes. In mammals, GSH-conjugates are exported from cells, and the GSH-constituent amino acids (Glu/Gly) are subsequently removed by ectopeptidases. The resulting Cys-conjugates are reabsorbed and, finally, a mercapturic acid is generated through N-acetylation. This pathway, though very well characterized in mammals, is poorly studied in non-mammalian biological models, such as bivalve mollusks, which are key organisms in aquatic ecosystems, aquaculture activities and environmental studies. In the present work, the compound 1-chloro-2,4-dinitrobenzene (CDNB) was used as a model electrophile to study the MAP in Pacific oysters Crassostrea gigas. Animals were exposed to 10µM CDNB and MAP metabolites were followed over 24h in the seawater and in oyster tissues (gills, digestive gland and hemolymph). A rapid decay was detected for CDNB in the seawater (half-life 1.7h), and MAP metabolites peaked in oyster tissues as soon as 15min for the GSH-conjugate, 1h for the Cys-conjugate, and 4h for the final metabolite (mercapturic acid). Biokinetic modeling of the MAP supports the fast CDNB uptake and metabolism, and indicated that while gills are a key organ for absorption, initial biotransformation, and likely metabolite excretion, hemolymph is a possible milieu for metabolite transport along different tissues. CDNB-induced GSH depletion (4h) was followed by increased GST activity (24h) in the gills, but not in the digestive gland. Furthermore, the transcript levels of glutamate-cysteine ligase, coding for the rate limiting enzyme in GSH synthesis, and two phase II biotransformation genes (GSTpi and GSTo), presented a fast (4h) and robust (∼6-70 fold) increase in the gills. Waterborne exposure to electrophilic compounds affected gills, but not digestive gland, while intramuscular exposure was able to modulate biochemical parameters in both tissues. This study is the first evidence of a fully functional and interorgan MAP pathway in bivalves. Hemolymph was shown to be responsible for the metabolic interplay among tissues, and gills, acting as a powerful GSH-dependent metabolic barrier against waterborne electrophilic substances, possibly also participating in metabolite excretion into the sea water. Altogether, experimental and modeled data fully agree with the existence of a classical mechanism for phase II xenobiotic metabolism and excretion in bivalves.


Asunto(s)
Acetilcisteína/metabolismo , Crassostrea/metabolismo , Dinitroclorobenceno/metabolismo , Animales , Branquias/enzimología , Branquias/metabolismo , Glutamato-Cisteína Ligasa/metabolismo , Glutatión/metabolismo , Glutatión Transferasa/metabolismo , Semivida , Modelos Biológicos , Agua de Mar/química , Contaminantes Químicos del Agua/toxicidad
15.
Aquat Toxicol ; 153: 27-38, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24745718

RESUMEN

The increasing industrial use of nanomaterials during the last decades poses a potential threat to the environment and in particular to organisms living in the aquatic environment. In the present study, the toxicity of zinc oxide nanoparticles (ZnONP) was investigated in Pacific oysters Crassostrea gigas. The nanoscale of ZnONP, in vehicle or ultrapure water, was confirmed, presenting an average size ranging from 28 to 88 nm. In seawater, aggregation was detected by TEM and DLS analysis, with an increased average size ranging from 1 to 2 µm. Soluble or nanoparticulated zinc presented similar toxicity, displaying a LC50 (96 h) around 30 mg/L. High zinc dissociation from ZnONP, releasing ionic zinc in seawater, is a potential route for zinc assimilation and ZnONP toxicity. To investigate mechanisms of toxicity, oysters were treated with 4 mg/L ZnONP for 6, 24 or 48 h. ZnONP accumulated in gills (24 and 48 h) and digestive glands (48 h). Ultrastructural analysis of gills revealed electron-dense vesicles near the cell membrane and loss of mitochondrial cristae (6 h). Swollen mitochondria and a more conspicuous loss of mitochondrial cristae were observed after 24 h. Mitochondria with disrupted membranes and an increased number of cytosolic vesicles displaying electron-dense material were observed 48 h post exposure. Digestive gland showed similar changes, but these were delayed relative to gills. ZnONP exposure did not greatly affect thiol homeostasis (reduced and oxidized glutathione) or immunological parameters (phagocytosis, hemocyte viability and activation and total hemocyte count). At 24 h post exposure, decreased (-29%) glutathione reductase (GR) activity was observed in gills, but other biochemical responses were observed only after 48 h of exposure: lower GR activity (-28%) and levels of protein thiols (-21%), increased index of lipid peroxidation (+49%) and GPx activity (+26%). In accordance with ultrastructural changes and zinc load, digestive gland showed delayed biochemical responses. Except for a decreased GR activity (-47%) at 48 h post exposure, the biochemical alterations seen in gills were not present in digestive gland. The results indicate that gills are able to incorporate zinc prior (24 h) to digestive gland (48 h), leading to earlier mitochondrial disruption and oxidative stress. Our data suggest that gills are the initial target of ZnONP and that mitochondria are organelles particularly susceptible to ZnONP in C. gigas.


Asunto(s)
Crassostrea/efectos de los fármacos , Nanopartículas/toxicidad , Estrés Oxidativo/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Óxido de Zinc/toxicidad , Animales , Branquias/efectos de los fármacos , Branquias/ultraestructura , Hemocitos/efectos de los fármacos , Dosificación Letal Mediana , Peroxidación de Lípido/efectos de los fármacos , Microscopía Electrónica de Transmisión , Mitocondrias/efectos de los fármacos
16.
Mar Drugs ; 10(3): 583-597, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22611355

RESUMEN

Hemocytes mediate a series of immune reactions essential for bivalve survival in the environment, however, the impact of harmful algal species and their associated phycotoxins upon bivalve immune system is under debate. To better understand the possible toxic effects of these toxins, Crassostrea gigas hemocytes were exposed to brevetoxin (PbTx-2). Hemocyte viability, monitored through the neutral red retention and MTT reduction assays, and apoptosis (Hoechst staining) remained unchanged during 12 h of exposure to PbTx-2 in concentrations up to 1000 µg/L. Despite cell viability and apoptosis remained stable, hemocytes incubated for 4 h with 1000 µg/L of PbTx-2 revealed higher expression levels of Hsp70 (p < 0.01) and CYP356A1 (p < 0.05) transcripts and a tendency to increase FABP expression, as evaluated by Real-Time quantitative PCR. The expression of other studied genes (BPI, IL-17, GSTO, EcSOD, Prx6, SOD and GPx) remained unchanged. The results suggest that the absence of cytotoxic effects of PbTx-2 in Crassostrea gigas hemocytes, even at high concentrations, allow early defense responses to be produced by activating protective mechanisms associated to detoxification (CYP356A1 and possibly FABP) and stress (Hsp70), but not to immune or to antioxidant (BPI, IL-17, EcSOD, Prx6, GPx and SOD) related genes.


Asunto(s)
Crassostrea/fisiología , Hemocitos/fisiología , Toxinas Marinas/farmacología , Oxocinas/farmacología , Transcripción Genética/efectos de los fármacos , Animales , Antioxidantes/metabolismo , Apoptosis/efectos de los fármacos , Separación Celular , Supervivencia Celular/efectos de los fármacos , Colorantes , ADN Complementario/biosíntesis , Hemocitos/efectos de los fármacos , Hemocitos/metabolismo , Hemolinfa/citología , Inactivación Metabólica , Rojo Neutro , ARN/biosíntesis , Reacción en Cadena en Tiempo Real de la Polimerasa , Estrés Fisiológico/genética , Sales de Tetrazolio , Tiazoles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...